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Computer Arithmetic 
CEE3804: Computer 
Applications for 
Civil and 
Environmental 
Engineers 
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Learning Objectives 
·  Define: bit, byte, machine epsilon, exponent, 

significand, mantissa, overflow, underflow,  
·  Contrast integer vs floating point storage.   
·  Describe how range and precision varies between 

single and double precision. 
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How computers store numbers: 
l  Computer arithmetic is not the same as pencil 

and paper arithmetic or math class arithmetic. 

l  Hand calculations usually short.  Small errors 
negligible.  Computer calculations longer, may 
accumulate errors over millions of steps to 
catastrophic results.  Software itself can be 
buggy. 
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Errors in scientific computing 
l  A. machine hardware malfunctions 

–  Very rare, but possible.  Recall Pentium floating point 
error. 

l  B. software errors  
–  More common than you might think.  
–  see calc.exe 

Windows 3.1 calculator.  Subtract 3.11 - 3.1 = 0.00.  
(Note the answer is calculated correctly but 
displayed incorrectly. You can check this by 
multiplying the answer above 0.00 * 100 = 1.) 

–  See 
http://www.wired.com/news/technology/bugs/
0,2924,69355,00.html 
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Errors, continued 
l  C. blunders - programming the wrong formula 

–  Depending on the QA/QC implemented, can be very 
common. 

–  These errors can arise from typos or other outright 
errors. experimental error - data acquired by machine 
with limited precision 

l  D. Truncation error 
–  A floating point number often cannot be represented 

exactly by the computer.  Only a fixed storage length 
is available.  Often a portion of the number must be 
truncated or rounded. 

–  Example: sums of a series of numbers vary 
depending on the order in which they are added. 
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Sorting Error Example 
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Truncation Error Example 
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Errors, continued 
l  E. numerical or rounding error 

–  1. ill conditioning or sensitivity of problem 
l  For example, finding the intersection of 2 nearly parallel 

lines. 
–  2. stability of algorithm 

l  Can also use inappropriate algorithm.  Example: Taylor 
series expansion to evaluate exp(x). 
 

l  Works for positive numbers but fails for large magnitude 
negative numbers because of excessive cancellation errors.  
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Rounding Error, continued 
l  If use this algorithm to solve for exp(-25), the 

following iterations results using single 
precision on an IBM PC.  The solution 
converges to 142.3876.   

l  The correct answer is  
  exp(-25) = 1.38879x10-11 
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Rounding Error, Example 
Iteration Value Iteration Value Iteration Value

1 -24 31 -1.165549E+09 61 131.7048
2 288.5 32 8.946474E+08 62 146.646
3 -2315.667 33 -6.661073E+08 63 140.7169
4 13960.38 34 4.815065E+08 64 143.033
5 -67419.84 35 -3.382176E+08 65 142.1422
6 271664.4 36 2.310352E+08 66 142.4796
7 -939350.8 37 -1.535951E+08 67 142.3537
8 2845072 38 9.945117E+07 68 142.4
9 -7667213 39 -6.275797E+07 69 142.3832
10 1.86135E+07 40 3.862274E+07 70 142.3892
11 -4.111539E+07 41 -2.319476E+07 71 142.3871
12 8.331979E+07 42 1.360137E+07 72 142.3878
13 -1.559786E+08 43 -7791729 73 142.3876
14 2.7134E+08 44 4363444 74 142.3877
15 -4.408577E+08 45 -2389430 75 142.3876
16 6.719512E+08 46 1280610 76 142.3876
17 -9.645325E+08 47 -671538.9 77 142.3876
18 1.308361E+09 48 345205.3 78 142.3876
19 -1.682288E+09 49 -173541.7 79 142.3876
20 2.056024E+09 50 85831.8
21 -2.394348E+09 51 -41312.08
22 2.662893E+09 52 19814.79
23 -2.834108E+09 53 -9018.639
24 2.891934E+09 54 4330.171
25 -2.834108E+09 55 -1737.469
26 2.671702E+09 56 971.2986
27 -2.42627E+09 57 -216.7576
28 2.125491E+09 58 295.3356
29 -1.798441E+09 59 78.34695
30 1.471502E+09 60 168.7589
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Significant Figures 
l  The significant digits of a number are those that 

can be used with confidence. They correspond 
to the certain digits plus one estimated digit. 

l  For example, a metric ruler marked to 
millimeters would have significant digits to the 
nearest tenth of a millimeter. 
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Accuracy 
l  Accuracy refers to how closely a computed or 

measured value corresponds to the true value.  
Since the true value is almost always unknown, 
accuracy is rarely known.  Sometimes bounds 
can be placed on how accurate (or inaccurate) a 
calculation is. 



1/22/15 Copyright, 2000 13 

Precision 
l  Precision refers to how closely individual 

computed or measured values agree with each 
other. 
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Absolute vs Relative Error 
l  True value = approximation + absolute error 
l  absolute error = |true value - approximation| 

valuetrue
ionapproximatvaluetrueerrorrelative −=
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Absolute vs Relative Error, cont. 
l  In practice, don’t know true value and use best 

available estimate 
l  absolute error = current estimate - previous 

estimate 

estimatecurrent
estimatepreviousestimatecurrenterrorrelative −=
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Numerical Data Types: Integers 
l  Most computers (but not all) use base 2. 

 
 
 
 

l  Thus    101 base 2 = 5 
  1100 base 2 = 12 

l  1 bit = binary storage location with only 2 
possible states: 0/1 or +/-  

l  1 byte = 8 bits 

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1
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Numerical Data Types: Integers 
l  Simple way to convert from binary to decimal  

  
l  Find the equivalent number in base 10 for 1100 

in base 2 
l  Each binary corresponds to a value multiplied 

by two and raise to the power n 
l  (1 * 2^3) + (1 * 2^2) + (0 * 2^1) + (0 * 2^0)=12 

l  Find the largest number that can be stored in 
one byte (8 bits). 
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Integers, continued 
l  Simply stored as base 2 number with 1 bit allocated 

to sign 

Size Range
1 bytes -127 .. 127
2 bytes -32,768 .. 32,767
4 bytes -2,147,483,648 ..

2,147,483,647

+/- 26 25 24 23 22 21 20

+/- 1 1 1 1 1 1 1 =+/- 127

long 

integer 
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Numeric Data Types: Floating point 
(reals) 

l  Stored as approximation only 
 
 
 
 
 
 
 
 
These particular examples are commonly implemented in the 
hardware and are processed relatively quickly.  However, any size 
and therefore range, is possible by implementing the storage in 
software only. 

Size Range Significant Digits
4 bytes 1.18x10-38 ..

3.4x1038
7 - 8 (single)

8 bytes 2.2x10-308 ..
1.7x10308

15 - 16 (double)

10
bytes

3.4x10-4932

..1.1x104932
19 - 20 (extended)
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Floating Point 
l  Floating point number is stored as 3 parts: 

–  1) sign (+ or -) 
–  2) exponent 
–  3) significand or mantissa 

l  A represented number conceptually has the 
value 

 +/- significand x 2exponent,  
   where 0 <= mantissa < 2 

l  (In practice, mantissa has single bit to the left of 
the binary decimal point, exponent is biased to 
save space for sign) 
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Floating points, continued 
l  Example binary storage for a 4 byte number  

( 4 bytes = 32 bits) 

1 bit
(sign)

8 bit
(exponent)

23 bit (mantissa or
significand)
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Three key computer values 
l  1) UFL underflow 

The smallest nonzero number (power of 2) that 
can be stored.  (Some applications set FP < UFL 
to 0, others stop with error.) 

l  2) OFL overflow 
The largest number (power of 2) that can be 
stored.  (Most applications consider FP > OFL 
to be error.) 
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Machine Epsilon 
l  3) em machine epsilon 

The smallest number (power of 2) that when 
added to 1 is greater than 1. 
 

  1.0 + em  > 1.0 
 
For FP < em, 

 1.0 + FP = 1.0 
 1.0E0 + 1.0E-8 = 1.00000001 ==> 1.0E0 
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Numeric parameters, continued 
l  In general, OFL and UFL are determined by the 

number of bits used to store the exponent.   
l  em is determined by the number of bits used to 

store the significand. 
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em in Excel 

epsilon 1+epsilon test
1 1.00E-08 1.0000000100000000 different than 1
1 1.00E-09 1.0000000010000000 different than 1
1 1.00E-10 1.0000000001000000 different than 1
1 1.00E-11 1.0000000000100000 different than 1
1 1.00E-12 1.0000000000010000 different than 1
1 1.00E-13 1.0000000000001000 different than 1
1 1.00E-14 1.0000000000000100 different than 1
1 1.00E-15 1.0000000000000000 equal to 1
1 1.00E-16 1.0000000000000000 equal to 1
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Excel example: machine epsilon 
power of 2 -47
1+2 p̂ower = 1 ? false

power of 2 -48
1+2 p̂ower = 1 ? true
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Machine epsilon: Importance 
l  Determines relative accuracy of computer 

arithmetic. E.g. x,y positive FP numbers, x > y, 
sum written as 
 

 x + y = x (1 + y/x) 

l  Unless y/x > em, the FP sum of x and y will be x. 
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em importance, continued 
l  Note all numbers cannot be represented exactly 

in a given base.  e.g. 1/3 cannot be written out 
exactly as a base 10 FP number.  0.3 cannot be 
written out exactly as a base 2 FP number. 

l  The error in reading in a decimal number can be 
as great as em. 

l  xstored = x(1 + dx)  or  xstored - x = dx   
 
|dx| <= em 
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Example Values 
l  On an IBM PC 

–  Single precision 
l  UFL   2^-126 = 1.18E-38 
l  OFL   2^128 = 3.40E+38 
l  em   2^-23 = 1.19E-07 

–  Double Precision 
l  UFL   2.23D-308 
l  OFL   1.79D+308 
l  em   2^-52 = 2.22D-16 

l  On Sharp EL-506A calculator (based on display) 
l  UFL   2^-328 = 1.83E-99 
l  OFL   2^332 = 8.75E99 
l  em   2^-30 = 9.31E-10 
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Implications of Floating Point 
Storage 

l  Only finite many floating point numbers, about 
2^31 in single precision. 

l  There is largest floating point number - OVL 
l  There is smallest floating point number - UFL 
l  The floating point numbers between 0 and OFL 

are not evenly distributed.  In single precision, 
there are 2^22 floating point numbers between 
each power of 2. 
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Example: 
l  2^22 numbers between 2^-126 and 2^-125  

 (1.17E-38 and 2.35E-38) 

l  2^22 numbers between 2^125 and 2^126  
 (4.25E37 and 8.50E37) 

l  Floating point numbers are concentrated near 0. 
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Implications, continued 
l  Arithmetic operations on floating point numbers 

cannot always be represented exactly, and must 
be either truncated or rounded to the nearest 
floating point number. 

l  em is smallest floating point number such that 
 1.0 + em > 1.0 

l  em represents the relative accuracy of computer 
arithmetic. 
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Implications, continued 
l  OFL and UFL are determined mostly by the 

number of bits in the exponent.  em is 
determined mostly by the number of bits in the 
significand (mantissa).  Measure different parts 
of the floating point representation 

l    0 < UFL < em < OFL 


