
1/22/15 Copyright, 2015 1

Computer Arithmetic
CEE3804: Computer
Applications for
Civil and
Environmental
Engineers

1/22/15 Copyright, 2000 2

Learning Objectives
·  Define: bit, byte, machine epsilon, exponent,

significand, mantissa, overflow, underflow,
·  Contrast integer vs floating point storage.
·  Describe how range and precision varies between

single and double precision.

1/22/15 Copyright, 2000 3

How computers store numbers:
l  Computer arithmetic is not the same as pencil

and paper arithmetic or math class arithmetic.

l  Hand calculations usually short. Small errors
negligible. Computer calculations longer, may
accumulate errors over millions of steps to
catastrophic results. Software itself can be
buggy.

1/22/15 Copyright, 2000 4

Errors in scientific computing
l  A. machine hardware malfunctions

–  Very rare, but possible. Recall Pentium floating point
error.

l  B. software errors
–  More common than you might think.
–  see calc.exe

Windows 3.1 calculator. Subtract 3.11 - 3.1 = 0.00.
(Note the answer is calculated correctly but
displayed incorrectly. You can check this by
multiplying the answer above 0.00 * 100 = 1.)

–  See
http://www.wired.com/news/technology/bugs/
0,2924,69355,00.html

1/22/15 Copyright, 2000 5

Errors, continued
l  C. blunders - programming the wrong formula

–  Depending on the QA/QC implemented, can be very
common.

–  These errors can arise from typos or other outright
errors. experimental error - data acquired by machine
with limited precision

l  D. Truncation error
–  A floating point number often cannot be represented

exactly by the computer. Only a fixed storage length
is available. Often a portion of the number must be
truncated or rounded.

–  Example: sums of a series of numbers vary
depending on the order in which they are added.

1/22/15 Copyright, 2000 6

Sorting Error Example

1/22/15 Copyright, 2000 7

Truncation Error Example

1/22/15 Copyright, 2000 8

Errors, continued
l  E. numerical or rounding error

–  1. ill conditioning or sensitivity of problem
l  For example, finding the intersection of 2 nearly parallel

lines.
–  2. stability of algorithm

l  Can also use inappropriate algorithm. Example: Taylor
series expansion to evaluate exp(x).

l  Works for positive numbers but fails for large magnitude
negative numbers because of excessive cancellation errors.

…+++++= !4
4

!3
3

!2
21 xxxxxe

1/22/15 Copyright, 2000 9

Rounding Error, continued
l  If use this algorithm to solve for exp(-25), the

following iterations results using single
precision on an IBM PC. The solution
converges to 142.3876.

l  The correct answer is
 exp(-25) = 1.38879x10-11

1/22/15 Copyright, 2000 10

Rounding Error, Example
Iteration Value Iteration Value Iteration Value

1 -24 31 -1.165549E+09 61 131.7048
2 288.5 32 8.946474E+08 62 146.646
3 -2315.667 33 -6.661073E+08 63 140.7169
4 13960.38 34 4.815065E+08 64 143.033
5 -67419.84 35 -3.382176E+08 65 142.1422
6 271664.4 36 2.310352E+08 66 142.4796
7 -939350.8 37 -1.535951E+08 67 142.3537
8 2845072 38 9.945117E+07 68 142.4
9 -7667213 39 -6.275797E+07 69 142.3832
10 1.86135E+07 40 3.862274E+07 70 142.3892
11 -4.111539E+07 41 -2.319476E+07 71 142.3871
12 8.331979E+07 42 1.360137E+07 72 142.3878
13 -1.559786E+08 43 -7791729 73 142.3876
14 2.7134E+08 44 4363444 74 142.3877
15 -4.408577E+08 45 -2389430 75 142.3876
16 6.719512E+08 46 1280610 76 142.3876
17 -9.645325E+08 47 -671538.9 77 142.3876
18 1.308361E+09 48 345205.3 78 142.3876
19 -1.682288E+09 49 -173541.7 79 142.3876
20 2.056024E+09 50 85831.8
21 -2.394348E+09 51 -41312.08
22 2.662893E+09 52 19814.79
23 -2.834108E+09 53 -9018.639
24 2.891934E+09 54 4330.171
25 -2.834108E+09 55 -1737.469
26 2.671702E+09 56 971.2986
27 -2.42627E+09 57 -216.7576
28 2.125491E+09 58 295.3356
29 -1.798441E+09 59 78.34695
30 1.471502E+09 60 168.7589

1/22/15 Copyright, 2000 11

Significant Figures
l  The significant digits of a number are those that

can be used with confidence. They correspond
to the certain digits plus one estimated digit.

l  For example, a metric ruler marked to
millimeters would have significant digits to the
nearest tenth of a millimeter.

1/22/15 Copyright, 2000 12

Accuracy
l  Accuracy refers to how closely a computed or

measured value corresponds to the true value.
Since the true value is almost always unknown,
accuracy is rarely known. Sometimes bounds
can be placed on how accurate (or inaccurate) a
calculation is.

1/22/15 Copyright, 2000 13

Precision
l  Precision refers to how closely individual

computed or measured values agree with each
other.

1/22/15 Copyright, 2000 14

Absolute vs Relative Error
l  True value = approximation + absolute error
l  absolute error = |true value - approximation|

valuetrue
ionapproximatvaluetrueerrorrelative −=

1/22/15 Copyright, 2000 15

Absolute vs Relative Error, cont.
l  In practice, don’t know true value and use best

available estimate
l  absolute error = current estimate - previous

estimate

estimatecurrent
estimatepreviousestimatecurrenterrorrelative −=

1/22/15 Copyright, 2000 16

Numerical Data Types: Integers
l  Most computers (but not all) use base 2.

l  Thus 101 base 2 = 5
 1100 base 2 = 12

l  1 bit = binary storage location with only 2
possible states: 0/1 or +/-

l  1 byte = 8 bits

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

1/22/15 Copyright, 2000 17

Numerical Data Types: Integers
l  Simple way to convert from binary to decimal

l  Find the equivalent number in base 10 for 1100

in base 2
l  Each binary corresponds to a value multiplied

by two and raise to the power n
l  (1 * 2^3) + (1 * 2^2) + (0 * 2^1) + (0 * 2^0)=12

l  Find the largest number that can be stored in
one byte (8 bits).

1/22/15 Copyright, 2000 18

Integers, continued
l  Simply stored as base 2 number with 1 bit allocated

to sign

Size Range
1 bytes -127 .. 127
2 bytes -32,768 .. 32,767
4 bytes -2,147,483,648 ..

2,147,483,647

+/- 26 25 24 23 22 21 20

+/- 1 1 1 1 1 1 1 =+/- 127

long

integer

1/22/15 Copyright, 2000 19

Numeric Data Types: Floating point
(reals)

l  Stored as approximation only

These particular examples are commonly implemented in the
hardware and are processed relatively quickly. However, any size
and therefore range, is possible by implementing the storage in
software only.

Size Range Significant Digits
4 bytes 1.18x10-38 ..

3.4x1038
7 - 8 (single)

8 bytes 2.2x10-308 ..
1.7x10308

15 - 16 (double)

10
bytes

3.4x10-4932

..1.1x104932
19 - 20 (extended)

1/22/15 Copyright, 2000 20

Floating Point
l  Floating point number is stored as 3 parts:

–  1) sign (+ or -)
–  2) exponent
–  3) significand or mantissa

l  A represented number conceptually has the
value

 +/- significand x 2exponent,
 where 0 <= mantissa < 2

l  (In practice, mantissa has single bit to the left of
the binary decimal point, exponent is biased to
save space for sign)

1/22/15 Copyright, 2000 21

Floating points, continued
l  Example binary storage for a 4 byte number

(4 bytes = 32 bits)

1 bit
(sign)

8 bit
(exponent)

23 bit (mantissa or
significand)

1/22/15 Copyright, 2000 22

Three key computer values
l  1) UFL underflow

The smallest nonzero number (power of 2) that
can be stored. (Some applications set FP < UFL
to 0, others stop with error.)

l  2) OFL overflow
The largest number (power of 2) that can be
stored. (Most applications consider FP > OFL
to be error.)

1/22/15 Copyright, 2000 23

Machine Epsilon
l  3) em machine epsilon

The smallest number (power of 2) that when
added to 1 is greater than 1.

 1.0 + em > 1.0

For FP < em,

 1.0 + FP = 1.0
 1.0E0 + 1.0E-8 = 1.00000001 ==> 1.0E0

1/22/15 Copyright, 2000 24

Numeric parameters, continued
l  In general, OFL and UFL are determined by the

number of bits used to store the exponent.
l  em is determined by the number of bits used to

store the significand.

1/22/15 Copyright, 2000 25

em in Excel

epsilon 1+epsilon test
1 1.00E-08 1.0000000100000000 different than 1
1 1.00E-09 1.0000000010000000 different than 1
1 1.00E-10 1.0000000001000000 different than 1
1 1.00E-11 1.0000000000100000 different than 1
1 1.00E-12 1.0000000000010000 different than 1
1 1.00E-13 1.0000000000001000 different than 1
1 1.00E-14 1.0000000000000100 different than 1
1 1.00E-15 1.0000000000000000 equal to 1
1 1.00E-16 1.0000000000000000 equal to 1

1/22/15 Copyright, 2000 26

Excel example: machine epsilon
power of 2 -47
1+2 p̂ower = 1 ? false

power of 2 -48
1+2 p̂ower = 1 ? true

1/22/15 Copyright, 2000 27

Machine epsilon: Importance
l  Determines relative accuracy of computer

arithmetic. E.g. x,y positive FP numbers, x > y,
sum written as

 x + y = x (1 + y/x)

l  Unless y/x > em, the FP sum of x and y will be x.

1/22/15 Copyright, 2000 28

em importance, continued
l  Note all numbers cannot be represented exactly

in a given base. e.g. 1/3 cannot be written out
exactly as a base 10 FP number. 0.3 cannot be
written out exactly as a base 2 FP number.

l  The error in reading in a decimal number can be
as great as em.

l  xstored = x(1 + dx) or xstored - x = dx

|dx| <= em

1/22/15 Copyright, 2000 29

Example Values
l  On an IBM PC

–  Single precision
l  UFL 2^-126 = 1.18E-38
l  OFL 2^128 = 3.40E+38
l  em 2^-23 = 1.19E-07

–  Double Precision
l  UFL 2.23D-308
l  OFL 1.79D+308
l  em 2^-52 = 2.22D-16

l  On Sharp EL-506A calculator (based on display)
l  UFL 2^-328 = 1.83E-99
l  OFL 2^332 = 8.75E99
l  em 2^-30 = 9.31E-10

1/22/15 Copyright, 2000 30

Implications of Floating Point
Storage

l  Only finite many floating point numbers, about
2^31 in single precision.

l  There is largest floating point number - OVL
l  There is smallest floating point number - UFL
l  The floating point numbers between 0 and OFL

are not evenly distributed. In single precision,
there are 2^22 floating point numbers between
each power of 2.

1/22/15 Copyright, 2000 31

Example:
l  2^22 numbers between 2^-126 and 2^-125

 (1.17E-38 and 2.35E-38)

l  2^22 numbers between 2^125 and 2^126
 (4.25E37 and 8.50E37)

l  Floating point numbers are concentrated near 0.

1/22/15 Copyright, 2000 32

Implications, continued
l  Arithmetic operations on floating point numbers

cannot always be represented exactly, and must
be either truncated or rounded to the nearest
floating point number.

l  em is smallest floating point number such that
 1.0 + em > 1.0

l  em represents the relative accuracy of computer
arithmetic.

1/22/15 Copyright, 2000 33

Implications, continued
l  OFL and UFL are determined mostly by the

number of bits in the exponent. em is
determined mostly by the number of bits in the
significand (mantissa). Measure different parts
of the floating point representation

l  0 < UFL < em < OFL

